Volume 6 - No. 4

سنتز و بررسی رفتار مغناطیسی نانوکامپوزیت مگنتیت– نانولوله¬های کربنی (Fe3O4-CNTs) به¬منظور کاربرد در نانوسیالات مغناطیسی بر¬پایه آب

الهه اسماعیلی و سید امین رونقی

تاريخ ثبت اوليه: // ، تاريخ دريافت نسخه اصلاح شده: // ، تاريخ پذيرش قطعي: //

چكيده     در این تحقیق، نانوکامپوزیت مگنتیت بر¬پایه نانولوله¬های کربنی (Fe3O4-CNTs) با استفاده از روش سولوترمال سنتز شد. ساختار نانوکامپوزیت Fe3O4-CNTs توسط آنالیزهای متنوع از جمله میکروسکوپ الکترونی عبوری (TEM)، پراش اشعه ایکس (XRD)، اشعه مادون قرمز تبدیل فوریه (FTIR)، مگنتومتر (VSM) و پتانسیل زتا (Zeta Potential) مورد مشخصه¬یابی قرار گرفت. بر¬اساس نتایج TEM و XRD اندازه ذرات و بلورک¬های مگنتیت، به¬ترتیب در حدود 250-150 نانومتر و 3/7 نانومتر به¬دست آمد که موید به¬هم پیوستن ذرات ریزتر و تشکیل خوشه¬های بزرگ¬تر در حین سنتز می¬باشد. پس از بررسی نتایج آنالیز VSM، مشخص گردید که نانوکامپوزیت حاصل دارای خواص پارامغناطیس است. در انتها، رفتار حرارتی نانوسیال مغناطیسی Fe3O4-CNTs بر¬پایه آب در حضور میدان مغناطیسی مورد ارزیابی قرار گرفت و نتایج حاکی از افزایش 30 درصدی ضریب انتقال حرارت نانوسیال پس از افزایش شدت میدان مغناطیسی حدود mT 3/2 بود.

كلمات كليدي    نانوکامپوزیت، سولوترمال، مگنتیت، نانولوله¬های کربنی، انتقال حرارت جابجایی.

The synthesis and investigation of magnetic behavior of magnetite-carbon nanotubes nanocomposite (Fe3O4-CNTs) for water-based convective heat transfer application

Elaheh Esmaeili and Seyyed Amin Rounaghi

Abstract    In the present investigation, the carbon nanotube supported magnetite nanocomposite (Fe3O4-CNTs) was prepared by the use of solvothermal technique. Fe3O4-CNTs nanocomposite was fully characterized by various techniques including TEM, XRD, FTIR, VSM and zeta potential analyses. According to TEM and XRD results, the particle and the crystallite sizes were found to be 150-250 nm and 7.3 nm, respectively which were indicative of the agglomeration and formation of larger clusters. VSM analysis confirmed the paramagnetic characteristic of the resulted nanocomposite. Finally, the effect of magnetic field on the thermal behavior of water-based Fe3O4-CNTs nanofluid was evaluated, showing an enhancement of heat transfer coefficient up to 30% at magnetic field of 2.3 mT.

Keywords    Nanocomposite, Solvothermal, Magnetite, Carbon nanotubes, Convective heat transfer.



1. Butter, K., Philipse, A.P., Vroege, G.J., Synthesis and Properties of Iron Ferrofluids, Journal of Magnetism and Magnetic Materials, 252 (2002) 1-3. 2. Hong, R.Y., Pan, T.T., Li, H.Z., Microwave Synthesis of Magnetic Fe3o4 Nanoparticles Used as a Precursor of Nanocomposites and Ferrofluids, Journal of Magnetism and Magnetic Materials, 303 (2006) 60-68. 3. Raj, K., Moskowitz, B., Casciari, R., Advances in Ferrofluid Technology, Journal of Magnetism and Magnetic Materials, 149 (1995) 174-180. 4. Zeng, H., Li, J., Liu, J.P., Wang, Z.L., Sun, S., Exchange-Coupled Nanocomposite Magnets by Nanoparticle Self-Assembly, Nature, 420 (2002) 395-398. 5. Zhang, G., Liu, Y., Zhang, C., Hu, W., Xu, W., Li, Z., et al., Aqueous Immune Magnetite Nanoparticles for Immunoassay, Journal of Nanoparticle Research, 11 (2009) 441-448. 6. Doyle, P.S., Bibette, J., Bancaud, A., Viovy, J.-L., Self-Assembled Magnetic Matrices for DNA Separation Chips, Science, 295 (2002) 2237. 7. Chiba, H., Chacko, T., Clayton, R.N., Goldsmith, J.R., Oxygen Isotope Fractionations Involving Diopside, Forsterite, Magnetite, and Calcite: Application to Geothermometry, Geochimica et Cosmochimica Acta, 53 (1989) 2985-2995. 8. Zhang, L., Zhang, Y., Fabrication and Magnetic Properties of Fe3O4 Nanowire Arrays in Different Diameters, Journal of Magnetism and Magnetic Materials, 321 (2009) L15-L20. 9. Kovalenko, M.V., Bodnarchuk, M.I., Lechner, R.T., Hesser, G., Schäffler, F., Heiss, W., Fatty Acid Salts as Stabilizers in Size- and Shape-Controlled Nanocrystal Synthesis:  The Case of Inverse Spinel Iron Oxide, Journal of the American Chemical Society, 129 (2007) 6352-6353. 10. Sun, Q., Ren, Z., Wang, R., Chen, W., Chen, C., Magnetite Hollow Spheres: Solution Synthesis, Phase Formation and Magnetic Property, Journal of Nanoparticle Research, 13 (2011) 213-220. 11. Feng, L., Jiang, L., Mai, Z., Zhu, D., Polymer-Controlled Synthesis of Fe3O4 Single-Crystal Nanorods, Journal of Colloid and Interface Science, 278 (2004) 372-375. 12. Zhong, L.S., Hu, J.S., Liang, H.P., Cao, A.M., Song, W.G., Wan, L.J., Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment, Advanced Materials, 18 (2006) 2426-2431. 13. Zhu, M., Diao, G., Synthesis of Porous Fe3O4 Nanospheres and Its Application for the Catalytic Degradation of Xylenol Orange, The Journal of Physical Chemistry C, 115 (2011) 18923-1834. 14. Chen, W., Li, X., Xue, G., Wang, Z., Zou, W., Magnetic and Conducting Particles: Preparation of Polypyrrole Layer on Fe3O4 Nanospheres, Applied Surface Science, 218 (2003) 216-222. 15. Chen, J.S., Zhang, Y., Lou, X.W., One-Pot Synthesis of Uniform Fe3O4 Nanospheres with Carbon Matrix Support for Improved Lithium Storage Capabilities, ACS Applied Materials & Interfaces, 3 (2011) 3276-3279. 16. Prolongo, S.G., Meliton, B.G., Del Rosario, G., Ureña, A., New Alignment Procedure of Magnetite–Cnt Hybrid Nanofillers on Epoxy Bulk Resin with Permanent Magnets, Composites Part B: Engineering, 46 (2013) 166-172. 17. Guo, Q., Guo, P., Li, J., Yin, H., Liu, J., Xiao, F., et al., Fe3O4–Cnts Nanocomposites: Inorganic Dispersant Assisted Hydrothermal Synthesis and Application in Lithium Ion Batteries, Journal of Solid State Chemistry, 213 (2014) 104-109. 18. He, Y., Huang, L., Cai, J.-S., Zheng, X.-M., Sun, S.-G., Structure and Electrochemical Performance of Nanostructured Fe3O4/Carbon Nanotube Composites as Anodes for Lithium Ion Batteries, Electrochimica Acta, 55 (2010) 1140-1144. 19. Zhou, X., Fang, C., Li, Y., An, N., Lei, W., Preparation and Characterization of Fe3O4-CNTs Magnetic Nanocomposites for Potential Application in Functional Magnetic Printing Ink, Composites Part B: Engineering, 89 (2016) 295-302. 20. Fortin, J.-P., Gazeau, F., Wilhelm, C., Intracellular Heating of Living Cells through Néel Relaxation of Magnetic Nanoparticles, European Biophysics Journal, 37 (2008) 223-228. 21. Hergt, R., Andra, W., d\'Ambly, C.G., Hilger, I., Kaiser, W.A., Richter, U., et al., Physical Limits of Hyperthermia Using Magnetite Fine Particles, IEEE Transactions on Magnetics, 34 (1998) 3745-3754. 22. Hong, H., Wright, B., Wensel, J., Jin, S., Ye, X.R., Roy, W., Enhanced Thermal Conductivity by the Magnetic Field in Heat Transfer Nanofluids Containing Carbon Nanotube, Synthetic Metals, 157 (2007) 437-440. 23. John, P., Shima, P.D., Baldev, R., Evidence for Enhanced Thermal Conduction through Percolating Structures in Nanofluids, Nanotechnology, 19 (2008) 305706. 24. Sadeghinezhad, E., Mehrali, M., Akhiani, A.R., Tahan Latibari, S., Dolatshahi-Pirouz, A., Metselaar, H.S.C., et al., Experimental Study on Heat Transfer Augmentation of Graphene Based Ferrofluids in Presence of Magnetic Field, Applied Thermal Engineering, 114 (2017) 415-427. 25. Amani, P., Amani, M., Mehrali, M., Vajravelu, K., Influence of Quadrupole Magnetic Field on Mass Transfer in an Extraction Column in the Presence of MnFe2O4 Nanoparticles, Journal of Molecular Liquids, 238 (2017) 145-154. 26. Esmaeili, E., Ghazanfar Chaydareh, R., Rounaghi, S.A., The Influence of the Alternating Magnetic Field on the Convective Heat Transfer Properties of Fe3O4-Containing Nanofluids through the Neel and Brownian Mechanisms, Applied Thermal Engineering, 110 (2017) 1212-1219. 27. Amrollahi, A., Rashidi, A.M., Lotfi, R., Emami Meibodi, M., Kashefi, K., Convection Heat Transfer of Functionalized Mwnt in Aqueous Fluids in Laminar and Turbulent Flow at the Entrance Region, International Communications in Heat and Mass Transfer, 37 (2010) 717-723. 28. Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., et al., Synthesis and Characterization of Biocompatible Fe3O4 Nanoparticles, Journal of Biomedical Materials Research Part A, 80 (2007) 333-341. 29. El Ghandoor, H., Zidan, H., Khalil, M.M., Ismail, M., Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles, International Journal of Electrochemical Science, 7 (2012) 5734-5745. 30. Ma, M., Zhang, Y., Yu, W., Shen, H.-y., Zhang, H.-q., Gu, N., Preparation and Characterization of Magnetite Nanoparticles Coated by Amino Silane, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 212 (2003) 219-226. 31. Saif, B., Wang, C., Chuan, D., Shuang, S., Synthesis and Characterization of Fe3O4 Coated on APTES as Carriers for Morin-Anticancer Drug, Journal of Biomaterials and Nanobiotechnology, 6 (2015) 267-275. 32. Vinosel, V.M., PersisAmaliya, A., Vijayalakshmi, S., Pauline, S., Synthesis and Characterization of Fe3O4 Nanopowder and Dielectric Studies, International Journal of Technical Research and Applications, 38 (2016) 17-19. 33. Rodes, A., Pastor, E., Iwasita, T., An Ftir Study on the Adsorption of Acetate at the Basal Planes of Platinum Single-Crystal Electrodes, Journal of Electroanalytical Chemistry, 376 (1994) 109-118. 34. Borodko, Y., Habas, S.E., Koebel, M., Yang, P., Frei, H., Somorjai, G.A., Probing the Interaction of Poly(Vinylpyrrolidone) with Platinum Nanocrystals by Uv−Raman and Ftir, The Journal of Physical Chemistry B, 110 (2006) 23052-23059. 35. Haghighat, F., Mokhtary, M., Preparation and Characterization of Polyvinylpyrrolidone/ Magnetite Decorated Carboxylic Acid Functionalized Multi- Walled Carbon Nanotube (PVP/MWCNT-Fe3O4) Nanocomposite, Journal of Inorganic and Organometallic Polymers and Materials, 27 (2017) 779-787. 36. Slistan-Grijalva, A., Herrera-Urbina, R., Rivas-Silva, J.F., Ávalos-Borja, M., Castillón-Barraza, F.F., Posada-Amarillas, A., Synthesis of Silver Nanoparticles in a Polyvinylpyrrolidone (PVP) Paste, and Their Optical Properties in a Film and in Ethylene Glycol, Materials Research Bulletin, 43 (2008) 90-96. 37. Esmaeili, E., Rashidi, A.M., Khodadadi, A.A., Mortazavi, Y., Rashidzadeh, M., Palladium–Tin Nanocatalysts in High Concentration Acetylene Hydrogenation: A Novel Deactivation Mechanism, Fuel Processing Technology, 120 (2014) 113-122. 38. Lu, A.-H., Salabas, E.L., Schüth, F., Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angewandte Chemie International Edition, 46 (2007) 1222-1244. 39. Nan, A., Craciunescu, I., Turcu, R. Aspects on Fundaments and Applications of Conducting Polymers: A Practical Approach. Kluwer Academic Publishers New York, (1999). 40. Nandwana, V., Elkins, K.E., Poudyal, N., Chaubey, G.S., Yano, K., Liu, J.P., Size and Shape Control of Monodisperse Fept Nanoparticles, The Journal of Physical Chemistry C, 111 (2007) 4185-4189. 41. Lopez, J.A., González, F., Bonilla, F.A., Zambrano, G., Gómez, M.E., Synthesis and Characterization of Fe3O4 Magnetic Nanofluid, Revista Latinoamericana de Metalurgia y Materiales, 30 (2010) 60-66. 42. Mahendran, V., Philip, J., An Optical Technique for Fast and Ultrasensitive Detection of Ammonia Using Magnetic Nanofluids, Applied Physics Letters, 102 (2013) 063107. 43. White, B., Banerjee, S., O\'Brien, S., Turro, N.J., Herman, I.P., Zeta-Potential Measurements of Surfactant-Wrapped Individual Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, 111 (2007) 13684-13690.
 Download PDF 

Term of Use  | Privacy Policy | Contact Us

Journal of Advanced Materials and Technologies
E-mail: office@jem.ir
Web Site: http://www.jamt.ir