Abstract



 
   

Volume 6 - No. 4
SYNTHESIS AND CHARACTERIZATION OF MAGNESIUM HYDROXYAPATITE NANOPOWDERS FOR ENAMEL REMINERALIZATION OF INITIAL CARIES LESIONS  
 

سنتز و ارزیابی نانو¬پودرمنیزیم‏ هيدروكسي‌آپاتيت و تاثیر آن در رمینرالیزاسیون ضایعات اولیه‏ی پوسیدگی مینای دندان

حمیده بصیری, علی ابوئی مهریزی و فرهاد بخشی

تاريخ ثبت اوليه: // ، تاريخ دريافت نسخه اصلاح شده: // ، تاريخ پذيرش قطعي: //

چكيده     در اين تحقيق به بررسی و مطالعه توانايي نانوذرات سرامیکی هیدروکسی‏آپاتیت (HA) و منیزیم‏هیدروکسی‏آپاتیت‏ (MgHA) در ترمیم مینای دندان آسیب‌دیده پرداخته شده است. به این منظور، نانوذرات به روش سنتز شیمیایی تر تهیه شدند. به منظور تشخیص ساختار فازی و گونههای شیمیایی موجود در نمونههای تهیه شده از آنالیز پراش XRD و FTIR استفاده شد. اندازه‌ي بلور‌ک‌ها برای نمونه HA و MgHA به¬ترتیب 88/43 و 59/25 نانومتر و ميزان بلورينگي 15/46 و 67/26 درصد با استفاده از داده‌هاي پراش پرتو ايكس محاسبه و با نمونه HA استوكيومتري مقايسه شد. مورفولوژی و اندازه ذره نمونههای تهیه شده توسط SEM مورد بررسی قرار گرفت. بررسی نتایج به¬دست آمده نشان داد که عنصر منیزیم به تركيب شيميايي و ساختار پودر سنتز شده الحاق شده است و ذرات پودری HA با اندازه ذره حدود 79/55 نانومتر و MgHA با اندازه ذره حدود 52/39 نانومتر با موفقیت سنتز شدند. با توجه به نتایج حاصل، حضور يون منيزيم در ساختار HA باعث كاهش اندازه‌ي بلور‌ها، ذرات و هم¬چنين كاهش ميزان بلورينگي مي‌گردد. به منظور ارزیابی کارایی ذرات تهیه شده در فرآیند رمینرالیزاسیون و شبیه‌سازی فرآیند پویای دمینرالیزاسیون-رمینرالیزاسیون، از روش pH-cycling و آزمون میکروسختی استفاده شد. علاوه بر این، سطح نمونههای دندانی، توسط SEM مورد بررسی قرار گرفت. نتایج به¬دست آمده در این بخش از تحقیق نشان میدهد که نانو¬ذرات HA و MgHA بر روی سطوح مینا جذب و باعث تغییر در خواص مکانیکی دندان شد و با تشکیل یک لایه‏ی جدید بر سطح مینا و پر کردن تمامی حفرات، رمینرالیزاسیون دندان را بهبود بخشید. به¬عبارتی دیگر، ترمیم مینای دندان آسیب‌دیده با نانوذرات MgHA نسبت به HA، به میزان 12 درصد بهبود یافت و به علت پتانسیل بالا در رمینرالیزاسیون دندانی می‏توانند به¬طور گسترده در محصولات بهداشت دهان و دندان مانند دهان‌شویه‏ها و خمیردندان به¬کار ‌روند.

كلمات كليدي    هیدروکسی‏آپاتیت، منیزیم‏ هیدروكسي‌آپاتيت، نانوساختار، بيوميمتيك، رمینرالیزاسیون.



Synthesis and Characterization of Magnesium Hydroxyapatite Nanopowders for Enamel Remineralization of Initial Caries Lesions

Hamideh Basiri, Ali Abouei Mehrizi and Farhad Bakhshi

Abstract    Hydroxyapatite (HA) and magnesium hydroxyapatite (MgHA) were successfully prepared and its ability to enhance the remineralization of initial enamel lesions was investigated in this study. For this purpose, the nanoparticles were prepared by the wet chemical synthesis. XRD and FTIR were applied to characterize phase structure and chemical species in the prepared samples. The crystallite size and crystallinity index of HA and MgHA samples were 43.88 and 29.59 nm and 46.15 and 26.67% respectively, which were calculated using XRD data and compared with stoichiometric HA sample. SEM was used to investigate the morphology and mean size of the nanoparticles. According to the results of physicochemical characterization, magnesium was detected in the crystal structure of the nanoparticles and nanoparticles of HA with mean particle size of 55.79 nm, MgHA with mean particle size of 39.52 nm were successfully synthesized. In addition, it is revealed that substitution of magnesium in the crystal structure of HA results in the reduction of crystalline and particle sizes, and also, reduce the crystallinity. A pH-cycling regime was used to simulate the dynamic demineralization-remineralization conditions and performance of the prepared materials in enamel remineralization was characterized by surface microhardness (SMH) measurement. Finally, surface of the enamel samples was further characterized by SEM investigations. According to the results of experiments, HA and MgHA can strongly adsorb on the enamel surface and improve the SMH of the substrate due to improvement of the dental remineralization. The improvement of dental remineralization can be attributed to the development of a new biomimetic apatite mineral deposition which progressively fills the surface scratches. According to the results of the present research work, MgHA shows 12% higher remineralization ability compared to that of HA and can be effectively used as remineralization agents in dental hygiene products such as toothpaste, mouthwashes, and oral health compounds.

Keywords    Hydroxyapatite, Magnesium Hydroxyapatite, Nano-Structure, Biomimetic, Remineralization.

 

منابع:

1. Slavkin, H.C. and Baum, B.J., Relationship of dental and oral pathology to systemic illness, JAMA: the journal of the American Medical Association, 284(10) (2000) 1215-1217. 2. Roveri, N., Foltran, I., Iafisco, M., Palazzo, B., Battistella, E., Foresti, E., Lelli, M. and Rimondini, L., Synthetic biomimetic carbonate-hydroxyapatite nanocrystals for enamel remineralization, Advanced Materials Research, 47 (2008) 821-824. 3. Choi, A.L Sun G, Zhang Y. and Grandjean P., Developmental fluoride neurotoxicity: a systematic review and meta-analysis, Environmental Health Perspectives, 120(10) (2012) 1362-1368. 4. Huang, S., Gao, S. and Yu, H., Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro, Biomedical Materials, 4(3) (2009) 034104. 5. Dorozhkin, S.V., Calcium orthophosphates in dentistry, Journal of Materials Science: Materials in Medicine, 24(6) (2013) 1335-1363. 6. Hellen, A., Quantitative Evaluation of Simulated Enamel Demineralization and Remineralization Using Photothermal Radiometry and Modulated Luminescence, (2010), University of Toronto. 7. Kwon, H., Kim, M.Y., Choi, C.H. and Kim, B.I., Combined effects of nano-hydroxyapatite and NaF on remineralization of early caries lesion, Key Engineering Materials, 330 (2007) 1347-1350. 8. Tschoppe, P., Zandim, D.L., Martus, P. and Kielbassa, A.M., Enamel and dentine remineralization by nano-hydroxyapatite toothpastes, Journal of dentistry, 39(6) (2011) 430-437. 9. Esteves-Oliveira, M., Meyer-Lueckel, H., Rodrigues, J.A., Santos, N.M. and Wierichs, R.J., Caries-preventive effect of anti-erosive and nano-hydroxyapatite-containing toothpastes in vitro, Clinical oral investigations, 21(1) (2017) 291-300. 10. Park, S.W., Kim, Y.U., Kim, K.N., Choi, H.J., Lee, Y.K., Kim, M.C. and Choi, B.J., The effect of hydroxyapatite on the remineralization of dental fissure sealant, Key Engineering Materials, 284 (2005) 35-38. 11. Hornby, K., Evans, M., Long, M., Joiner, A. and Laucello, M., Salvaderi, A., Enamel benefits of a new hydroxyapatite containing fluoride toothpaste, International Dental Journal, 59 (2009) 325-331. 12. Ishiwata, Y., Mishima, M., Kazama, H., Hoshiai ,T. and Niwa, M., Zinc and magnesium content in human teeth. Nihon eiseigaku zasshi, Japanese Journal of Hygiene, 34(5) (1979) 697-705. 13. Legfros, R.Z., Sakae, T., Bautista, C., Retino, M. and LeGeros, J.P., Magnesium and Carbonate in Enamel and Synthetic Apatites, Advances in Dental Research, 10(2) (1996) 225-231. 14. Farzadi, A., Bakhshi, F., Solati-Hashjin, M., Asadi-Eydivand, M. and abuOsman, N.A., Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization, Ceramics International, 40(4) (2014) 6021-6029. 15. Abdallah, M.N., Surface Reactivity of Tooth Enamel with Dyes, Oxidizing Agents and Magnesium Ions and Its Effect on Tooth Color, in Faculty of Dentistry2013, McGill University: Montreal, Canada. 16. Fadeev, I., Shvorneva, L.I., Barinov, S.M. and Orlovskii, V.P. Synthesis and structure of magnesium-substituted hydroxyapatite, Inorganic Materials, 39(9) (2003) 947-950. 17. Stookey, G.K., The Featherstone laboratory pH cycling model: A prospective, multi-site validation exercise, American Journal of Dentistry, 24(5) (2011) 322. 18. Landi, E., Tampieri, A., Mattioli-Belmonte, M., Celotti, G., Sandri, M., Gigante, A., Fava, P. and Biagini, G., Biomimetic Mg-and Mg, CO3 substituted hydroxyapatites: synthesis characterization and in vitro behaviour, Journal of the European Ceramic Society, 26(13) (2006) 2593-2601. 19. Suchanek, W.L., Byrappa, K., Shuk, P., Riman, R.E., Janas, V.F. and TenHuisen, K.S., et al., Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemicalâhydrothermal method, Biomaterials, 25(19) (2004) 4647-4657. 20. Kannan, S. and Ferreira, J., Synthesis and thermal stability of hydroxyapatite-β-tricalcium phosphate composites with cosubstituted sodium, magnesium, and fluorine, Chemistry of materials, 18(1) (2006) 198-203. 21. Gawda, H., Sekowski, L. and Trebacz, H., In vitro examination of human teeth using ultrasound and X-ray diffraction, Acta of Bioengineering and Biomechanics, 6(1) (2004) 41-50. 22. Venkatasubbu, G.D., Ramasamy S, Ramakrishnan, V., and Kumar, J., Nanocrystalline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin, 3 Biotech, 1(3) (2011) 173-186. 23. Pang, Y. and Bao, X., Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles, Journal of the European Ceramic Society, 23(10) (2003) 1697-1704. 24. Zhai, Y., Cui, F. and Wang, Y., Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils, Current Applied Physics, 5(5) (2025) 429-432. 25. Koutsopoulos, S., Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods, Journal of biomedical materials research, 62(4) (2002) 600-612. 26. Kolmas, J., Jaklewicz , A., Zima , A., BuÄko, M., Paszkiewicz , Z., Lis , J., Ålósarczyk , A. and Kolodziejski , W., Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: the effect on physicochemical properties, Journal of Molecular Structure, 987(1) (2011) 40-50. 27. Salimi, M.N., Bridson, R.H., Grover, L.M. and Leeke, G.A., et al., Effect of processing conditions on the formation of hydroxyapatite nanoparticles, Powder Technology, 218 (2012) 109-118. 28. Elena Landi, A.T., Monica Mattioli-Belmonte, Giancarlo Celotti, Monica Sandri, Antonio Gigante, Paola Fava, Graziella Biagini, Biomimetic Mg- and Mg,CO3-substituted hydroxyapatites: synthesis characterization and in vitro behavior, Journal of the European Ceramic Society, 26 (2006) 2593â2601. 29. Feagin, F., Koulourides, T. and Pigman, W., The characterization of enamel surface demineralization, remineralization, and associated hardness changes in human and bovine material, Archives of Oral biology, 14(12) (1969) 1407-1417. 30. Spencer, P., Barnes, C., Martini, J., Garcia, R., Elliott, C. and Doremus R., Incorporation of magnesium into rat dental enamel and its influence on crystallization, Archives of oral biology, 34(10) (1989) 767-771. 31. LeGeros, R.Z., Piliero, J.A. and Pentel, L., Comparative properties of deciduous and permanent (young and old) human enamel1, Gerodontology, 2(1) (1983) 1-8.
 
 Download PDF 


Term of Use  | Privacy Policy | Contact Us

Journal of Advanced Materials and Technologies
E-mail: office@jem.ir
Web Site: http://www.jamt.ir